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Abstract
Heat capacity data are unavailable or incomplete for many minerals at geologically relevant tem-

peratures. Despite the availability of entropy and enthalpy values in numerous thermodynamic tables 
(even sometimes at elevated temperatures), there remains need for extrapolation beyond, or interpo-
lation between, temperatures. This approach inevitably results in estimates for entropy and enthalpy 
values because the heat capacity coefficients required for optimal thermodynamic treatment are less 
frequently available. Here we propose a simple method for obtaining heat capacity coefficients of 
minerals. This method requires only the empirically measured temperature-specific heat capacity for 
calculation via a matrix algorithm. The system of equations solver is written in the Python computing 
language and has been made accessible in an online repository. Thermodynamically, the solution to a 
system of equations represents the heat capacity coefficients that satisfy the mineral-specific polynomial. 
Direct coefficient calculation will result in more robust thermodynamic data, which are not subject to 
fitting uncertainties. Using hematite as an example, this method provides results that are comparable 
to conventional means and is applicable to any solid material. Coefficients vary within the traditional 
large 950 K temperature interval, indicating that best results should instead utilize a smaller 400 K 
temperature interval. Examples of large-scale implications include the refinement of geothermal gradi-
ent estimation in rapidly subsiding sedimentary basins or metamorphic and hydrothermal evolution.
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Introduction
Earth systems are rarely, if ever, truly at standard tem-

perature and pressure; the effect of these parameters must be 
considered for robust thermodynamic treatment. Regarding 
systems at non-standard temperatures, mineralogists and 
petrologists employ (directly or indirectly) the heat capacity 
(CP) for the selected material(s) for purposes such as studying 
the effects of temperature and pressure for basin modeling 
or maturity modeling (Waples and Waples 2004). However, 
despite the wide availability of CP data for many minerals, in 
most cases the numbers are often applicable to narrow tem-
perature ranges. In other cases, the entropy (ΔS) and enthalpy 
(ΔH) must either be extrapolated or interpolated to the desired 
temperature (Robie and Hemingway 1995), or the final free 
energy (ΔGf) is obtained via linear regression (Toulmin and 
Barton 1964). Considering that CP follows a polynomial trend 
for temperature, it is expected that linear regressions of free 
energy may introduce uncertainty (although linear behavior 
may provide reasonable estimates for free energy using small 
ΔT intervals). One limitation within the present heat capacity 
literature may be found for the mineral hematite in Heming-
way (1990), where there is a function discontinuity occurring 
at 950 K between the lower (T <950 K) and upper (T >950 K) 
temperature domains. The heat capacity of a solid is typically 
continuous except for occasional discontinuities and has been 
attributed to crystallographic/phase transitions (e.g., Guyot et 

al. 1993). Heat capacity function discontinuities will be trans-
lated to the calculated or regressed polynomial coefficients. 
Ideally, the characteristic mineral specific CP coefficients have 
been determined and published, allowing for exact calculation 
of entropy and enthalpy at a given temperature. Unfortunately, 
these coefficients are often unavailable throughout the litera-
ture, one notable exception being the compilation in Robie and 
Hemingway (1995).

Fundamentally, the heat capacity of a material is effectively 
the input energy required to raise the thermal energy of that 
same material. The heat capacity is vital to mineralogical, 
petrological, and geochemical research. It is quantified for a 
selected material using various calorimetric techniques and 
when plotted against temperature, takes the form of a polyno-
mial (e.g., Klemme and van Miltenburg 2003; Benisek et al. 
2012). The CP polynomial order and the number of coefficients 
varies throughout the literature. For example, the form in Xiong 
et al. (2016) contains seven coefficients and is a third-order 
polynomial, while the Shomate equation (e.g., NIST) has five 
coefficients and is also a third-order polynomial, while the 
progenitor, the Maier-Kelley form contains only three coef-
ficients and is a second-order polynomial (Maier and Kelley 
1932). The form commonly found associated with geological 
solids or minerals is the second-order polynomial with five 
coefficients, as given by Hemingway et al. (1978). Finally, 
the CP polynomial formula is often determined by regression 
of existing data to fit a specific polynomial form (Hemingway 
1990; Waples and Waples 2004). The primary goal of this 
study is to evaluate the polynomial through direct means. This 
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The five coefficients, after the xn scalar matrix transpose and substitution 
become
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where A = x1 and E = x5. Upon coefficient back-substitution into the CP polynomial, 
the empirical CP is returned at each temperature sub-equation. One limitation of 
this approach is that it requires a square n × n matrix, and thus, the number of 
temperature sub-equations is limited to the number of coefficients in the polynomial. 
If there are more temperatures (rows) than coefficients (columns), then A cannot 
be taken to rref, and the system does not have a solution. It is worth noting that 
the accuracy and uncertainty of this method it is, of course, limited to the quality 
of the reported CP input data.

Software implementation
Manually solving a system of equations by rref is a lengthy process, particularly 

for non-integer numbers. To this end, it is advantageous to employ a calculator (e.g., 
online, computer code, etc.). We have developed the CP Coefficent Calculator (C3) 
to calculate the coefficients using the rref method above. Modifying Python3 code 
found in Kong et al. (2021), C3 is offered under the MIT license and is available 
(along with a README manual) at https://github.com/WVUStableIsotopeLab/
CodeswithPython.

Results and discussion
As an example, hematite CP coefficients obtained from rref 

calculation are provided in Table 1 (subinterval 2) and are pre-
sented in Figure 1. These data are computed across two major 
temperature domains (298.15 to 950 K and 950 to 1800 K) 
(Hemingway 1990). Given the sensitivity of the coefficients, 
the rref direct-calculated results compare favorably to the he-
matite values reported by Robie and Hemingway (1995). For 
the upper-temperature interval (950 to 1800 K), our proposed 
method yields an additional coefficient that is not available, as 
noted in the existing literature. Robie and Hemingway (1995) 
provide a line of best-fit regression coefficients over the range of 
298 to 1800 K for A, B, and C of –808.9, 0.2466, and –8.423E-5, 
respectively. This is compared to the direct calculation method 
presented here, where five coefficients are calculated over a 
much more condensed temperature range from 400 to 800 K in 
100 K increments. We believe that our approach is likely to be 

Figure 1. Hematite CP coefficients across the two major temperature 
domains as found in Hemingway (1990). The low-temperature domain 
represents the coefficients for T <950 K, while the high-temperature 
domain represents the coefficients for T >950 K. Coefficients calculated 
through rref methodology (400 to 800 K for T <950 K and 1000 to 
1400 K for T >950 K) correspond to subintervals 2 and 6 in Table 1, 
respectively) are compared to those reported in Robie and Hemingway 
(1995). (a) Coefficients A, B, C, and D. (b) Coefficient E. (Color online.)

approach allows for smaller ΔT to be utilized and eliminates 
any introduced fitting bias (e.g., overfitting; see Gamsjäger and 
Wiessner 2018). Therefore, employing this direct coefficient 
calculation technique relies solely upon the empirical CP, 
ensuring that the polynomial retains fidelity. In other words, 
as the direct calculation is axiomatically correct, the values 
obtained from the equation proposed in this contribution will 
remove much of the errors associated with measurements from 
interpolated and extrapolated values available in the literature 
so far. Finally, this method can be used to directly calculate 
thermal diffusivity, a crucial physical parameter of geological 
systems that reflects the ability to conduct thermal energy 
relative to its ability to store the energy (Fuchs et al. 2021). 
Applications of accurate heat capacity measurement are in the 
fields of geothermal gradient determination in active basins, 
basin modeling, and studying geodynamic transformations in 
tectonically active regions.

Methodology
Theoretical background

Here, we offer a simple method for the determination of the characteristic coef-
ficients requiring only a suite of five CP values at their corresponding temperatures. 
For solids, the relationship between heat capacity and temperature is nonlinear 
(e.g., Robie et al. 1978; Klemme and van Miltenburg 2003; Benisek et al. 2012; 
Xiong et al. 2016; Ulian et al. 2020; Vassiliev and Taldrik 2021), implying that 
linear determination of ΔGf is likely to induce uncertainty of over(under)estimation 
compared to a polynomial fit. For a CP equation with five coefficients, there are 
five vectors, each at five unique temperatures with accompanying scalars. Note 
that the scalars are equal to the coefficients, which, of course, are the same for all 
vectors (i.e., all temperatures). The intersection of the vectors is the solution to 
the system of equations, where there are an equal number of scalar coefficients 
that satisfy all CP equations at each temperature simultaneously. Once the scalar 
coefficients have been evaluated, ΔS, ΔH, and ultimately ΔGf at a selected tem-
perature may be determined.

For a CP polynomial with n equations and n coefficients, there is a square n × n 
matrix, written in the general form Ax = b, or
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This method may be employed for any solid substance in which existing 
CP data are known at a corresponding temperature. As an illustrative example 
calculation, let us consider an example of hematite using CP polynomial found in 
Hemingway (1990), where

CP = A – BT + CT2 – DT−0.5 + ET−2	 (2)

This form has five coefficients and is a second-order polynomial. Now, for an 
n × n matrix, there are five reported CP at five temperatures requiring five equations. 
Combining the CP polynomial with Equation 1, Ax = b becomes (approximately)
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Note that b to the right of the equals sign in Equation 3 contains the temperature-
specific CP in Hemingway (1990) from 400 to 800 K. The coefficients are obtained 
through Gaussian elimination and by taking the augmented matrix to reduced 
row echelon form (rref) via elementary row operations. Rewriting, we find the 
augmented matrix becomes A|b
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more accurate as the temperature interval is significantly reduced 
and does not cross any phase transition (e.g., 950 K in Fig. 2). In 
addition, because the relationship between temperature and CP is 
nonlinear, the curve-fitting approach is particularly susceptible 
to extrapolation since the rate of change is not constant (i.e., 
d2y/dx2 ≠ 0). Regarding interpolation, empirical CP(T) data used 
in both curve-fitting and direct calculation may be improved by 
reducing the temperature interval between interpolations. These 
temperature intervals are often given in 100 K increments (e.g., 
Robie and Hemingway 1995). It is worth mentioning that the 
direct calculation method is an interpolative approach and, thus, 
is subject to the quality of the CP(T) data and the temperature 
increments. If, for example, the temperature increment was 
decreased to 50 K, the resulting CP(T) would likely lead to even 
more accurate coefficients. In this scenario, five coefficients 
could still be determined but over a tighter temperature interval 
(400, 450, 500, 550, and 600 K).

One of the most striking observations of the tabulated data 
is that it may display discontinuous behavior when plotted 
graphically, particularly at the interface between the low- and 
high-temperature domain intervals (~950 K) (Fig. 2). Moreover, 
note the change in the concavity between the low- and high-

Figure 2. Hematite heat capacity values, as reported in Hemingway 
(1990), with corresponding temperature intervals (as given in Table 1). 
The numbered temperature subintervals are those that were used to 
evaluate the polynomial coefficients reported in Table 1 at each interval. 
Red dots and blue triangles are the respective <950 K and >950 K of the 
major “two-domain” temperature intervals. Black line indicates function 
discontinuity at 950 K. (Color online.)

temperature domain intervals. The highest CP value across the 
entire temperature range is at 950 K, and the significant trough 
is about ~1300 K. This observation, along with the discontinuity 
at 950 K, indicate that the resulting coefficients will be subse-
quently affected. Indeed, when temperature intervals of ~400 K 
are utilized, the coefficients are not static but drift (Table 1). It 
is apparent that the most accurate coefficients are those which 
minimize temperature drift obtained by performing the rref cal-
culation over a small ΔT interval. Since entropy and enthalpy are 
produced from integrating CP

o/T and CP (where CP is the selected 
polynomial with commensurate coefficients) over a range start-
ing at 298.15 K, it is reasonable to use, say for a temperature of 
780 K, coefficients that pertain to a subinterval (i.e., subintervals 
2 or 3 in Fig. 2 and Table 1) instead of conventional coefficients 
for the entire 298.15 to 950 K domain. For the temperature 
intervals <950 K, the behavior is relatively linear (subinter-
vals 1 to 4 in Fig. 2). In comparison, the temperature intervals 
>950 K are parabolic about the local minimum at ~1300 K. This 
behavior is translated to the CP values as well (subinterval 6 in 
Fig. 2 and Table 1).

Implications
The heat capacity is a fundamental aspect not only limited 

to minerals but also liquids, gases, and dissolved species. It 
underlies thermodynamics as it is necessary for entropy, enthalpy, 
and, ultimately, free energy calculations. The direct calculation 
method provided above requires only empirical CP for data 
input, thus avoiding curve-fitting uncertainties or human-
induced bias. Therefore, the utility of this method is vast and has 
direct application to fluid-rock interactions. Specific examples 
including slab-subduction (i.e., Peacock 1987), hydrothermal 
or geothermal systems, and equilibrium speciation modeling. 
While the mineral hematite was used as an illustrative example, 
this method has been applied to diamond due to its use in high-
temperature mantle research (e.g., Stachel et al. 2022) and to 
quartz because of its ubiquity. In addition, we have applied this 
method to mineral assemblages used in geothermometry, includ-
ing galena-pyrite-sphalerite (Smith et al. 1977), biotite-garnet (as 
pyrope and almandine) (Ferry and Spear 1978), and muscovite-
biotite (e.g., Hoisch 1989). The CP coefficients for almandine, 
diamond, muscovite, pyrite, pyrope, quartz, and sphalerite have 
been calculated over at least two temperature domains and are 
compared against tabulated values. These results are provided as 
Online Materials1. The method given above, however, can still 
be improved. Future work could examine coefficient behavior 

Table 1. Heat capacity coefficients for hematite calculated at ΔT of ~400 K using rref and CP(T) found in Hemingway (1990)
T Interval (K-K)	 Fig. 2 Interval no.		             Hematite heat capacity coefficients
		  A	 B	 C	 D	 E
298.15–700	 1	 841.57	 –0.65736	 3.3946E-04	 –1.0901E+04	 5.2795E+06
400–800	 2	 994.40	 –0.78862	 3.9574E-04	 –1.3361E+04	 7.4669E+06
500–900	 3	 1.1801E+03	 –0.92370	 4.4462E-04	 –1.6606E+04	 1.1139E+07
600–950	 4	 1.3253E+03	 –1.0102	 4.7053E-04	 –1.9417E+04	 1.5526E+07
						    
950–1300	 5	 –402.36	 –9.0874E-03	 5.7717E-05	 1.7680E+04	 –5.6871E+07
1000–1400	 6	 –1283.6	 0.34356	 –1.3459E-05	 3.8537E+04	 –1.1664E+08
1100–1500	 7	 –579.09	 –0.10303	 2.8004E-05	 2.0480E+04	 –5.0923E+07
1200–1600	 8	 –448.63	 5.9654E-02	 3.5304E-05	 1.7089E+04	 3.7975E+07
1300–1700	 9	 2.9410E+03	 –0.92811	 1.8031E-04	 –7.6875E+04	 3.9375E+08

1400–1800	 10	 88.544	 –5.8354E-02	 4.6708E-05	 416.67	 6.2500E+07
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by dividing temperature domains into smaller ΔT subsections. 
Generation of CP coefficients from rref direct calculation for 
smaller temperature intervals is expected to be more accurate 
than using coefficients under the conventional “two-domain” 
approach—especially for temperatures where discontinuities 
occur (e.g., ~900 to 1300 K for hematite in Intervals 5 and 6 in 
Table 1 and Fig. 2). Finally, developing an understanding of the 
interesting local minimum at ~1300 K would almost certainly 
prove fruitful.
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